Biochemical and physiological function of stearoyl-CoA desaturase.
نویسندگان
چکیده
A key and highly regulated enzyme that is required for the biosynthesis of monounsaturated fatty acids is stearoyl-CoA desaturase (SCD), which catalyzes the D(9)-cis desaturation of a range of fatty acyl-CoA substrates. The preferred substrates are palmitoyl- and stearoyl-CoA, which are converted into palmitoleoyl- and oleoyl-CoA respectively. Oleate is the most abundant monounsaturated fatty acid in dietary fat and is therefore readily available. Studies of mice that have a naturally occurring mutation in the SCD-1 gene isoform as well as a mouse model with a targeted disruption of the SCD gene (SCD-1(-/-)) have revealed the role of de novo synthesized oleate and thus the physiological importance of SCD-1 expression. SCD-1 deficiency results in reduced body adiposity, increased insulin sensitivity, and resistance to diet-induced obesity. The expression of several genes of lipid oxidation are upregulated, whereas lipid synthesis genes are downregulated. SCD-1 was also found to be a component of the novel metabolic response to the hormone leptin. Therefore, SCD-1 appears to be an important metabolic control point, and inhibition of its expression could be of benefit for the treatment of obesity, diabetes, and other metabolic diseases. In this article, we summarize the recent and timely advances concerning the important role of SCD in the biochemistry and physiology of lipid metabolism.
منابع مشابه
Investigation of (Stearoyl-CoA Desaturase 1) SCD1 Gene Polymorphism in Khuzestan Buffalo Population Using PCR-RFLPMethod
Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). A number of studies support the hypothesis that SCD gene regulation and polymorphism may affect fatty acid composition and fat quality in meat and milk. Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase gene have been predicted to result in ...
متن کاملAn Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism
Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...
متن کاملRegulation of microsomal stearoyl-coenzyme A desaturase. Purification of a non-substrate-binding protein that stimulates activity.
Crude cytosolic fraction from rat liver was examined for proteins that may be involved in regulation of microsomal stearoyl-CoA desaturase activity. Gel filtration revealed the presence of several components that either stimulate or inhibit this enzyme. In addition, other components bind the acyl-CoA substrate, thus affecting observed activities in vitro. A protein that stimulates stearoyl-CoA ...
متن کاملGene regulation of mammalian desaturases.
Stearoyl-CoA desaturase (SCD) catalyses the synthesis of oleic acid (18:1, n -9), which is mostly esterified into triacylglycerols (TAGs) as an energy reserve. Delta-6 Desaturase (D6D) and Delta-5 desaturase (D5D) are the key enzymes for the synthesis of highly unsaturated fatty acids (HUFAs), such as arachidonic acid (20:4, n -6) and docosahexaenoic acid (22:6, n -3), that are incorporated in ...
متن کاملGlucose induces expression of stearoyl-CoA desaturase in 3T3-L1 adipocytes.
Stearoyl-CoA desaturase (SCD; EC 1.14.99.5) is a key enzyme in the synthesis polyunsaturated fatty acids. Liver and ose tissue are the predominant sites of SCD expression. Regulation of tic SCD by various nutritional and hormonal ors, such as insulin, dietary carbohydrates and polyunsaturated fatty s, has been well documented. Little is known, ver, about adipocyte SCD regulation despite high le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 297 1 شماره
صفحات -
تاریخ انتشار 2009